题目内容
已知点(1,
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
+
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}的通项cn=bn•(
)n,求数列{cn}的前n项和Rn;
(3)若数列{
}前n项和为Tn,问Tn>
的最小正整数n是多少?
| 1 |
| 3 |
| Sn |
| Sn-1 |
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}的通项cn=bn•(
| 1 |
| 3 |
(3)若数列{
| 1 |
| bnbn+1 |
| 1000 |
| 2009 |
(1)因为点(1,
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,
所以f(1)=a=
,所以,f(x)=(
)x.
因为等比数列{an}的前n项和为f(n)-c,
所以a1=f(1)-c=
-c,
a2=[f(2)-c]-[f(1)-c]=(
)2-c-
+c=-
,
a3=[f(3)-c]-[f(2)-c]=(
)3-c-(
)2+c=-
.
又数列{an}成等比数列,所以,a1=
=
=-
=
-c,所以c=1.
所以
-1=-
.
又公比q=
=
=
所以an=-
(
)n-1=-2(
)n.
由数列{bn}的前n项和满足Sn-Sn-1=
+
(n≥2).
则(
-
)(
+
)=
+
(n≥2),
又bn>0,
>0,所以
-
=1.
所以,数列{
}构成一个首项为1公差为1的等差数列,
则
=1+(n-1)×1=n,所以Sn=n2.
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
满足b1=c=1.
所以,bn=2n-1(n∈N*);
(2)由cn=bn(
)n=(2n-1)(
)n,
所以Rn=c1+c2+c3+…+cn=1×(
)1+3×(
)2+5×(
)3+…+(2n-1)×(
)n①
两边同时乘以
得:
Rn=1×(
)2+3×(
)3+5×(
)4+…+(2n-3)×(
)n+(2n-1)×(
)n+1②
①式减②式得:
Rn=
+2[(
)2+(
)3+(
)4+…+(
)n]-(2n-1)×(
)n+1
化简得:
Rn=
+2×
-(2n-1)×(
)n+1=
-
×(
)n
所以Rn=1-
.
(3)Tn=
+
+
+…+
=
+
+
+…+
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
)=
;
由Tn=
>
,得n>
,所以,满足Tn>
的最小正整数为112.
| 1 |
| 3 |
所以f(1)=a=
| 1 |
| 3 |
| 1 |
| 3 |
因为等比数列{an}的前n项和为f(n)-c,
所以a1=f(1)-c=
| 1 |
| 3 |
a2=[f(2)-c]-[f(1)-c]=(
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 9 |
a3=[f(3)-c]-[f(2)-c]=(
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 27 |
又数列{an}成等比数列,所以,a1=
| a22 |
| a3 |
| ||
-
|
| 2 |
| 3 |
| 1 |
| 3 |
所以
| 1 |
| 3 |
| 2 |
| 3 |
又公比q=
| a3 |
| a2 |
-
| ||
-
|
| 1 |
| 3 |
所以an=-
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
由数列{bn}的前n项和满足Sn-Sn-1=
| Sn |
| Sn-1 |
则(
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
又bn>0,
| Sn |
| Sn |
| Sn-1 |
所以,数列{
| Sn |
则
| Sn |
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
满足b1=c=1.
所以,bn=2n-1(n∈N*);
(2)由cn=bn(
| 1 |
| 3 |
| 1 |
| 3 |
所以Rn=c1+c2+c3+…+cn=1×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
两边同时乘以
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
①式减②式得:
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
化简得:
| 2 |
| 3 |
| 1 |
| 3 |
(
| ||||
1-
|
| 1 |
| 3 |
| 2 |
| 3 |
| 2(n+1) |
| 3 |
| 1 |
| 3 |
所以Rn=1-
| n+1 |
| 3n |
(3)Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
由Tn=
| n |
| 2n+1 |
| 1000 |
| 2009 |
| 1000 |
| 9 |
| 1000 |
| 2009 |
练习册系列答案
相关题目