题目内容

如图,已知三棱锥A-PBC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且AB=2MP.
(1)求证:DM平面APC;
(2)求证:平面ABC⊥平面APC.
精英家教网
(1)由于M为AB中点,D为PB中点,故MD为三角形PAB的中位线,故MDAP.
而AP?平面APC,MD不在平面APC内,故有DM平面APC.
(2)∵M为AB中点,且AB=2MP,故有MA=MB=MP,故M为△PAB的外心,故有PA⊥PB.
再由AP⊥PC,PB∩PC=P,可得PA⊥平面PBC,故PA⊥BC.
再由BC⊥PC,PA∩PC=P,可得BC⊥平面PAC.
而BC?平面ABC,故有平面ABC⊥平面APC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网