ÌâÄ¿ÄÚÈÝ
14£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=$\frac{5}{4}$£¬ÇÒÆäÓÒ½¹µãΪF2£¨5£¬0£©£¬ÔòË«ÇúÏßCµÄ·½³ÌΪ£¨¡¡¡¡£©| A£® | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | C£® | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D£® | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 |
·ÖÎö ÀûÓÃÒÑÖªÌõ¼þ£¬Áгö·½³Ì£¬Çó³öË«ÇúÏߵļ¸ºÎÁ¿£¬¼´¿ÉµÃµ½Ë«ÇúÏß·½³Ì£®
½â´ð ½â£ºË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=$\frac{5}{4}$£¬ÇÒÆäÓÒ½¹µãΪF2£¨5£¬0£©£¬
¿ÉµÃ£º$\frac{c}{a}=\frac{5}{4}$£¬c=5£¬¡àa=4£¬b=$\sqrt{{5}^{2}-{4}^{2}}$=3£¬
ËùÇóË«ÇúÏß·½³ÌΪ£º$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏß·½³ÌµÄÇ󷨣¬Ë«ÇúÏߵļòµ¥ÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®½«º¯Êýf£¨x£©=sin2xµÄͼÏóÏòÓÒÆ½ÒƦգ¨0£¼¦Õ£¼$\frac{¦Ð}{2}$£©¸öµ¥Î»ºóµÃµ½º¯Êýg£¨x£©µÄͼÏó£®Èô¶ÔÂú×ã|f£¨x1£©-g£¨x2£©|=2µÄx1¡¢x2£¬ÓÐ|x1-x2|min=$\frac{¦Ð}{3}$£¬Ôò¦Õ=£¨¡¡¡¡£©
| A£® | $\frac{5¦Ð}{12}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{4}$ | D£® | $\frac{¦Ð}{6}$ |
9£®Èô¼¯ºÏM={x|£¨x+4£©£¨x+1£©=0}£¬N={x|£¨x-4£©£¨x-1£©=0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| A£® | {1£¬4} | B£® | {-1£¬-4} | C£® | {0} | D£® | ∅ |
4£®ÒÑÖª¶¨ÒåÔÚ£¨-3£¬3£©Éϵĺ¯Êýf£¨x£©Âú×ãf£¨x-1£©=-f£¨1-x£©£¬ÇÒx¡Ý0ʱ£¬f£¨x£©=x3£¬Ôòf£¨x£©+27f£¨1-x£©£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
| A£® | ∅ | B£® | £¨-3£¬$\frac{1}{2}$£© | C£® | £¨-2£¬$\frac{3}{2}$£© | D£® | £¨$\frac{3}{2}$£¬3£© |