题目内容
如图所示的△OAB绕x轴和y轴各旋转一周,各自会产生怎样的几何体,分别计算其表面积.
△OAB绕x轴旋转一周,产生的几何体是由圆台OO1中挖去圆锥OO1而组成的组合体

其表面由圆台OO1的侧面、上底面圆和圆锥OO1的侧面组成
∵AO1=3,B0=2,OA=3
,AB=
∴其表面积为S1=π(3+2)×
+π×22+π×3×3
=(5
+9
+4)π
△OAB绕y轴旋转一周,产生的几何体是有公共底面圆的一个大圆锥减去一个小圆锥组成的组合体,其表面由两个圆锥的侧面组成
其表面积为S2=π×3×3
+π×3×
=(9
+3
)π.
答:△OAB绕x轴和y轴各旋转一周,形成几何体的表面积分别为(5
+9
+4)π、(9
+3
)π.
其表面由圆台OO1的侧面、上底面圆和圆锥OO1的侧面组成
∵AO1=3,B0=2,OA=3
| 2 |
| 10 |
∴其表面积为S1=π(3+2)×
| 10 |
| 2 |
| 10 |
| 2 |
△OAB绕y轴旋转一周,产生的几何体是有公共底面圆的一个大圆锥减去一个小圆锥组成的组合体,其表面由两个圆锥的侧面组成
其表面积为S2=π×3×3
| 2 |
| 10 |
| 2 |
| 10 |
答:△OAB绕x轴和y轴各旋转一周,形成几何体的表面积分别为(5
| 10 |
| 2 |
| 2 |
| 10 |
练习册系列答案
相关题目