题目内容
已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2
(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为
,
(1)求角C;
(2)求△ABC面积S的最大值.
| 2 |
| 2 |
(1)求角C;
(2)求△ABC面积S的最大值.
(1)利用正弦定理化简已知的等式得:2
(sin2A-sin2C)=2
sinB(a-b),
整理得:a2-c2=ab-b2,即a2+b2-c2=ab,
∵c2=a2+b2-2abcosC,即a2+b2-c2=2abcosC,
∴2abcosC=ab,即cosC=
,
则C=
;
(2)∵C=
,∴A+B=
,即B=
-A,
∵
=
=2
,即a=2
sinA,b=2
sinB,
∴S△ABC=
absinC=
absin
=
×2
sinA×2
sinB×
=2
sinAsinB=2
sinAsin(
-A)=2
sinA(
cosA+
sinA)
=3sinAcosA+
sin2A=
sin2A+
(1-cos2A)
=
sin2A-
cos2A+
=
sin(2A-
)+
,
则当2A-
=
,即A=
时,S△ABCmax=
.
| 2 |
| 2 |
整理得:a2-c2=ab-b2,即a2+b2-c2=ab,
∵c2=a2+b2-2abcosC,即a2+b2-c2=2abcosC,
∴2abcosC=ab,即cosC=
| 1 |
| 2 |
则C=
| π |
| 3 |
(2)∵C=
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
∵
| a |
| sinA |
| b |
| sinB |
| 2 |
| 2 |
| 2 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| 2 |
| 2 |
| ||
| 2 |
=2
| 3 |
| 3 |
| 2π |
| 3 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
=3sinAcosA+
| 3 |
| 3 |
| 2 |
| ||
| 2 |
=
| 3 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| 3 |
| π |
| 6 |
| ||
| 2 |
则当2A-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
3
| ||
| 2 |
练习册系列答案
相关题目