题目内容
已知数列{an}的前n项和Sn=-an-21-n+2,bn=2nan.
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)若cn=
an,求数列{cn}的前n项和Tn.
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)若cn=
| 2n+1 | n |
分析:(I)利用“n=1,a1=S1;n≥2,an=Sn-Sn-1”可得an与an-1的关系,证明bn-bn-1为常数即可;
(II)利用“错位相减法”即可得出.
(II)利用“错位相减法”即可得出.
解答:解:(I)Sn=-an-21-n+2,
当n=1时,S1=-a1-1+2,a1=
,
当n≥2时,Sn-1=-an-1-22-n+2,
∴an=Sn-Sn-1=-an+an-1+21-n,
∴2an=an-1+21-n,
∴bn-bn-1=2nan-2n-1an-1=2n-1(2an-an-1)=1,
又b1=2a1=1,∴{bn}是首项为1,公差为1的等差数列.
(II)∵bn=1+(n-1)•1=n,∴an=
,
∴cn=
an=(2n+1)
.
∴Tn=3×
+5×
+7×
+…+(2n-1)
+(2n+1)
,①
Tn=3×
+5×
+…+(2n-1)
+(2n+1)
,②
①-②得
Tn=3×
+2×
+2×
+…+2×
-(2n+1)
,
Tn=
+
-(2n+1)
=
-
-
,
∴Tn=5-
.
当n=1时,S1=-a1-1+2,a1=
| 1 |
| 2 |
当n≥2时,Sn-1=-an-1-22-n+2,
∴an=Sn-Sn-1=-an+an-1+21-n,
∴2an=an-1+21-n,
∴bn-bn-1=2nan-2n-1an-1=2n-1(2an-an-1)=1,
又b1=2a1=1,∴{bn}是首项为1,公差为1的等差数列.
(II)∵bn=1+(n-1)•1=n,∴an=
| n |
| 2n |
∴cn=
| n+1 |
| n |
| 1 |
| 2n |
∴Tn=3×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 3 |
| 2 |
| ||||
1-
|
| 1 |
| 2n+1 |
| 5 |
| 2 |
| 1 |
| 2n-1 |
| 2n+1 |
| 2n+1 |
∴Tn=5-
| 2n+5 |
| 2n |
点评:本题考查了利用“n=1,a1=S1;n≥2,an=Sn-Sn-1”求an、等差数列的定义、“错位相减法”等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |