题目内容
已知函数
是定义在R上的奇函数,
,![]()
,
则不等式
的解集是 .
![]()
解析考点:利用导数研究函数的单调性.
分析:先根据 [
]′=
>0判断函数
的单调性,进而分别看x>1和0<x<1时f(x)与0的关系.再根据函数的奇偶性判断-1<x<0和x<-1时f(x)与0的关系,最后去x的并集即可得到答案.
解:[
]′=
>0,即x>0时
是增函数
当x>1时,
>f(1)=0,f(x)>0;
0<x<1时,
<f(1)=0,f(x)<0.
又f(x)是奇函数,所以-1<x<0时,f(x)=-f(-x)>0;x<-1时f(x)=-f(-x)<0.
则不等式f(x)>0的解集是(-1,0)∪(1,+∞)
故答案为:(-1,0)∪(1,+∞).
练习册系列答案
相关题目