题目内容

已知函数f(x)=数学公式,(a∈R).
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)在(1)条件下,若直线y=kx与函数y=f(x)的图象相切,求实数k的值.

解:(1)∵f(x)=
∴f(x)=
∵函数f(x)在x=1处取得极值
∴f(1)=a-1=0
∴a=1
经检验,a=1时f(x)=-故0<x<1时f(x)>0,x>1时f(x)<0,所以函数f(x)在(0,1)单调递增,在(1,+∞)单调递减故f(x)在x=1处取得极值.
∴a=1
(2)由(1)可知a=1
∴f(x)=
∴f(x)=-
设切点A(x0,y0
∴k=f(x0)=-
又∵k=kOA=
=-
∴lnx0=-

∴k=kOA===
分析:(1)根据极值的定义可得f(1)=0求出a的值然后再回代到题中利用极值的定义判断函数f(x)是否在x=1处取得极值以免产生增根.
(2)设切点A(x0,y0)根据直线y=kx与函数y=f(x)的图象相切和导数的几何意义可得k=f(x0)再根据k=kOA建立关于x0的等式然后求出x0(要注意其大于0)进而求出k
点评:本题主要考查了函数极值的概念已及导数的几何意义的应用,属常考题,较难.解题的关键是在第二问中根据直线y=kx与函数y=f(x)的图象相切和导数的几何意义得出k=f′(x0)而直线y=kx有过原点故k=kOA从而建立了关于x0的等式=-但要注意x0>0!
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网