题目内容

若数列{an} 满足
an+1 2
an 2
=p(p为正常数,n∈N*),则称{an} 为等方比数列.甲:数列{an} 是等方比数列;乙:数列{an} 是等比数列.则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即非充分又非必要条件
充分性:若数列{an} 为“等方比数列”,设
an+1 2
an 2
=p=1
可得数列{an} 的各项的绝对值相等,但符号不能确定.
比如:1,1,-1,-1,1,1,-1,-1,…,
就是一个等方比数列,而不是等比数列,故充分性不成立;
必要性:若“数列{an} 是等比数列”,设它的公比是q(q≠0)
an+1  
an  
=q?
an+1 2
an 2
=q2(正常数),
说明数列{an} 为“等方比数列”,故必要性成立.
综上所述,“数列{an} 是等方比数列”是“数列{an} 是等比数列”的必要非充分条件.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网