题目内容

已知椭圆x2+4y2=4与双曲线x2-2y2=a(a>0)的焦点重合,则该双曲线的离心率等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由已知中椭圆x2+4y2=4的焦点得出双曲线的焦点坐标,从而求得a值,得到双曲线的标准方程,通过双曲线的标准方程,即可求出该双曲线的离心率.
解答:∵椭圆x2+4y2=4,即
∴椭圆的c=,其焦点坐标为(,0).
∴双曲线x2-2y2=a(a>0)的焦点为(,0).
∵x2-2y2=a即
?a=2,
e==
故选B.
点评:本题考查的知识点是椭圆的简单性质、双曲线的简单性质,双曲线的离心率通过a,b,c的关系可以求解.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网