题目内容
设定义在R上的函数f(x),且f(x)≠0,满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求证:f(x)在R上为单调增函数;
(2)解不等式f(3x-x2)>4;
(3)解方程[f(x)]2+
f(x+3)=f(2)+1.
(1)求证:f(x)在R上为单调增函数;
(2)解不等式f(3x-x2)>4;
(3)解方程[f(x)]2+
| 1 |
| 2 |
(1)设x>y,∵f(x+y)=f(x)f(y),∴f(x)=
,
令x=x-y,代入上式得,f(x-y)=
,
∵x>y,∴x-y>0,∵当x>0时,f(x)>1,
∵f(x-y)>1,∴
>1,则f(x)>f(y),
∴f(x)在R上为单调增函数;
(2)∵f(1)=2,f(x+y)=f(x)f(y),∴f(2)=f(1+1)=f(1)f(1)=4,
由于f(3x-x2)>4,∴f(3x-x2)>f(2),
又∵f(x)在R上为单调增函数,∴3x-x2-2>0,解得1<x<2,
∴不等式的解集是(1,2);
(3)令x=0,y=1代入f(x+y)=f(x)f(y),得f(0+1)=f(0)f(1)=f(1),
∵f(1)=2,∴f(0)=1,
令x=2,y=1代入f(x+y)=f(x)f(y),得f(2+1)=f(2)f(1)=8,即f(3)=8,
∴f(x+3)=f(x)f(3)=8f(x),代入[f(x)]2+
f(x+3)=f(2)+1得,
[f(x)]2+4f(x)-5=0,解得f(x)=1或-5,
令y=-x代入f(0)=f(x)f(-x)=1,即f(-x)=
,
∵f(x)在R上为单调增函数,f(0)=1;
∴f(x)>0,则f(x)=-5舍去,故f(x)=1,即x=0,
所以所求的方程解是0.
| f(x+y) |
| f(y) |
令x=x-y,代入上式得,f(x-y)=
| f(x) |
| f(y) |
∵x>y,∴x-y>0,∵当x>0时,f(x)>1,
∵f(x-y)>1,∴
| f(x) |
| f(y) |
∴f(x)在R上为单调增函数;
(2)∵f(1)=2,f(x+y)=f(x)f(y),∴f(2)=f(1+1)=f(1)f(1)=4,
由于f(3x-x2)>4,∴f(3x-x2)>f(2),
又∵f(x)在R上为单调增函数,∴3x-x2-2>0,解得1<x<2,
∴不等式的解集是(1,2);
(3)令x=0,y=1代入f(x+y)=f(x)f(y),得f(0+1)=f(0)f(1)=f(1),
∵f(1)=2,∴f(0)=1,
令x=2,y=1代入f(x+y)=f(x)f(y),得f(2+1)=f(2)f(1)=8,即f(3)=8,
∴f(x+3)=f(x)f(3)=8f(x),代入[f(x)]2+
| 1 |
| 2 |
[f(x)]2+4f(x)-5=0,解得f(x)=1或-5,
令y=-x代入f(0)=f(x)f(-x)=1,即f(-x)=
| 1 |
| f(x) |
∵f(x)在R上为单调增函数,f(0)=1;
∴f(x)>0,则f(x)=-5舍去,故f(x)=1,即x=0,
所以所求的方程解是0.
练习册系列答案
相关题目
设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则( )
| πx |
| 2 |
A、m=-
| ||
| B、m=1-e,n=5 | ||
C、m=-
| ||
| D、m=e-1,n=4 |