题目内容
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(Ⅰ)求a2,a3;
(Ⅱ)证明an=
.
(Ⅰ)求a2,a3;
(Ⅱ)证明an=
| 3n-1 |
| 2 |
(I)∵a1=1,
∴a2=3+1=4,
∴a3=32+4=13;
(II)证明:由已知an-an-1=3n-1,n≥2
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=3n-1+3n-2+…+3+1=
.n≥2
当n=1时,也满足上式.
所以an=
.
∴a2=3+1=4,
∴a3=32+4=13;
(II)证明:由已知an-an-1=3n-1,n≥2
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=3n-1+3n-2+…+3+1=
| 3n-1 |
| 2 |
当n=1时,也满足上式.
所以an=
| 3n-1 |
| 2 |
练习册系列答案
相关题目