题目内容

已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(Ⅰ)求a2,a3
(Ⅱ)证明an=
3n-1
2
(I)∵a1=1,
∴a2=3+1=4,
∴a3=32+4=13;

(II)证明:由已知an-an-1=3n-1,n≥2
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=3n-1+3n-2+…+3+1=
3n-1
2
.n≥2
当n=1时,也满足上式.
所以an=
3n-1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网