题目内容

已知命题p:方程x2+mx+1=0有两上不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R,若p∨q为真命题,p∧q为假命题,求m的取值范围.

解:令f(x)=x2+mx+1,若命题p真,则有,解得 m>2.
若命题q真,则有判别式△′=[4(m-2)]2-16<0,解得 1<m<3.
根据p∨q为真命题,p∧q为假命题,可得命题p和命题q一个为真,另一个为假.
当命题p为真、命题q为假时,m≥3.
当命题p为假、命题q为真时,1<m≤2.
综上可得,m的取值范围为[3,+∞)∪(1,2].
分析:若命题p真,则有 ,解得 m>2;若命题q真,则有判别式△′=[4(m-2)]2-16<0,解得 1<m<3.分命题p为真、命题q为假,以及命题p为假、命题q为真两种情况,分别求出m的取值范围,取并集即得所求.
点评:本题主要考查一元二次方程根的分布与系数的关系,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网