题目内容
已知|
|=|
|,且
与
的夹角为60°,则
与
+
的夹角为
| a |
| b |
| a |
| b |
| a |
| a |
| b |
30°
30°
.分析:先计算
•
,再计算
•(
+
)和|
+
|,最后利用夹角公式计算cos<
,
+
>即可
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
解答:解:∵
与
的夹角为60°∴
•
=
|
||
|=
|
|2
∴
•(
+
)=
2+
•
=
2
|
+
|=
=
=
|
|
∴cos<
,
+
>=
=
=
∵
与
+
的夹角范围为[0,π],
∴
与
+
的夹角为30°
故答案为30°
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| 1 |
| 2 |
| a |
∴
| a |
| a |
| b |
| a |
| a |
| b |
| 3 |
| 2 |
| a |
|
| a |
| b |
(
|
2
|
| 3 |
| a |
∴cos<
| a |
| a |
| b |
| ||||||
|
|
| ||||
|
| ||
| 2 |
∵
| a |
| a |
| b |
∴
| a |
| a |
| b |
故答案为30°
点评:本题考察了向量数量积运算的定义和性质,解题时要认真体会向量数量积运算在解决长度和夹角问题中的重要应用
练习册系列答案
相关题目