题目内容

已知数列{an}满足a1=1,an+1=2an+1(n∈N+)

(1)求数列{an}的通项公式;

(2)若数列{bn}满足(n∈N+),证明:{bn}是等差数列.

(1)解析:∵an+1=2an+1(n∈N+),

∴an+1+1=2(an+1),

∴{an+1}是以a1+1=2为首项,2为公比的等比数列.

∴an+1=2n,

即an=2n-1(n∈N+).

(2)证明:∵,

,

∴2[(b1+b2+…+bn)-n]=nbn                      ①

2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1            ②

②-①,得2(bn+1-1)=(n+1)bn+1-nbn,

即(n-1)bn+1-nbn+2=0                              ③

nbn+2-(n+1)bn+1+2=0                              ④

④-③,得nbn+2-2nbn+1+nbn=0,

即bn+2-2bn+1+bn=0,

∴bn+2-bn+1=bn+1-bn(n∈N+).

∴{bn}是等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网