题目内容
已知数列{an}满足a1=1,an+1=2an+1(n∈N+)(1)求数列{an}的通项公式;
(2)若数列{bn}满足
(n∈N+),证明:{bn}是等差数列.
(1)解析:∵an+1=2an+1(n∈N+),
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n,
即an=2n-1(n∈N+).
(2)证明:∵
,
∴
,
∴2[(b1+b2+…+bn)-n]=nbn ①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1 ②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0 ③
nbn+2-(n+1)bn+1+2=0 ④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N+).
∴{bn}是等差数列.
练习册系列答案
相关题目