题目内容
已知抛物线y2=4x焦点为F,A(2,2),P为抛物线上的点,则丨PA丨+丨PF丨的最小值为
3
3
.分析:设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.
解答:解:设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,为2-(-1)=3
故答案为3.
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,为2-(-1)=3
故答案为3.
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,判断当D,P,A三点共线时|PA|+|PD|最小,是解题的关键.
练习册系列答案
相关题目