题目内容
数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an,
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
+
+…+
.
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
(I)由已知
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
an-1(n≥2)
∴
=
•
•…•
=
•
•…•
=n,
∴an=n;且a1=1也适合,
所以an=n.
(II)
=
=
=
(
-
)
Wn=
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)=
-
.
|
| n |
| n-1 |
∴
| an |
| a1 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
∴an=n;且a1=1也适合,
所以an=n.
(II)
| 1 | ||
|
| 1 |
| (n+1)2-1 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
Wn=
| 1 |
| 1•3 |
| 1 |
| 2•4 |
| 1 |
| 3•5 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 2n+3 |
| 2n(n+1) |
练习册系列答案
相关题目