题目内容
若m>0,n>0,点(—m,n)关于直线x + y—1 = O的对称点在直线;x—y+ 2=O上,那么的最小值等于
A. B. C. 9 D. 18
A
设函数f(x)=ax+bx+1(a,b为实数),F(x)=
(1)若f(-1)=0且对任意实数x均有f(x)成立,求F(x)表达式。
(2)在(1)的条件下,当x时,g(x)=f(x)-kx是单调函数,求实数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。
已知椭圆=1(a>b>0)与双曲线=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( )
A. B. C. D.
(本小题满分14分)
已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)判断函数f(x)在上的单调性;(2)是否存在实数,使曲线y=g(x)在点x=x0处的切线与y轴垂直? 若存在,求出x0的值;若不存在,请说明理由.(3)若实数m,n满足m>0, n>0,求证:nnem≥mnen.
(2009年济南模拟)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是 ( )
A. B. C. D.