题目内容
设函数(1)求p与q的关系;
(2)若f(x)在其定义域内为单调函数,求p的取值范围.
(3)设
【答案】分析:(1)根据函数
,且
,可得(p-q)(
)=0,从而可求p与q的关系;
(2)求导函数,再进行分类讨论:当p=0时,f(x)在其定义域(0,+∞)内为单调减函数;当p>0时,要使f(x)在其定义域(0,+∞)内为单调函数,只需h(x)在(0,+∞)内满足h(x)≥0恒成立,从而可求p的取值范围;(3)确定
在[1,e]上的最值,再分类讨论:①当p=0时,f(x)min=f(1)=0,不合题意;②当p≥1时,只需f(x)max>g(x)min(x∈[1,e]);③当0<p<1时,不合题意,从而可求实数p的取值范围是.
解答:解:(1)由题意,∵函数
,且
,∴(p-q)(
)=0
∵
≠0,∴p-q=0,∴p=q
(2)由(1)知,
,求导函数,可得f′(x)=
当p=0时,f′(x)=-
<0,所以f(x)在其定义域(0,+∞)内为单调减函数
当p>0时,要使f(x)在其定义域(0,+∞)内为单调函数,由于h(x)=px2-2x+p图象为开口向上的抛物线,所以只需h(x)在(0,+∞)内满足h(x)≥0恒成立
函数h(x)=px2-2x+p的对称轴为
,∴
∴只需
,∵p>0,∴p≥1
综上所述,p的取值范围为{0}∪[1,+∞)
(3)∵
在[1,e]上是减函数,
∴x=e时,g(x)min=2;x=1时,g(x)max=2e,即g(x)∈[2,2e]
①当p=0时,由(2)知f(x)在[1,e]上是减函数,∴f(x)min=f(1)=0,不合题意;
②当p≥1时,由(2)知f(x)在[1,e]上是增函数,f(1)=0<2,
又
在[1,e]上是减函数,故只需f(x)max>g(x)min(x∈[1,e]),
∵f(x)max=f(e)=p(e-
)-2,g(x)min=2,
∴p(e-
)-2>2,∴
;
③当0<p<1时,由x∈[1,e],
≥0,
由(2)知当p=1时,f(x)在[1,e]上是增函数,
≤
≤
2,不合题意
综上,实数p的取值范围是
.
点评:本题考查导数知识的运用,考查函数的单调性,考查存在性问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,综合性强.
(2)求导函数,再进行分类讨论:当p=0时,f(x)在其定义域(0,+∞)内为单调减函数;当p>0时,要使f(x)在其定义域(0,+∞)内为单调函数,只需h(x)在(0,+∞)内满足h(x)≥0恒成立,从而可求p的取值范围;(3)确定
解答:解:(1)由题意,∵函数
∵
(2)由(1)知,
当p=0时,f′(x)=-
当p>0时,要使f(x)在其定义域(0,+∞)内为单调函数,由于h(x)=px2-2x+p图象为开口向上的抛物线,所以只需h(x)在(0,+∞)内满足h(x)≥0恒成立
函数h(x)=px2-2x+p的对称轴为
∴只需
综上所述,p的取值范围为{0}∪[1,+∞)
(3)∵
∴x=e时,g(x)min=2;x=1时,g(x)max=2e,即g(x)∈[2,2e]
①当p=0时,由(2)知f(x)在[1,e]上是减函数,∴f(x)min=f(1)=0,不合题意;
②当p≥1时,由(2)知f(x)在[1,e]上是增函数,f(1)=0<2,
又
∵f(x)max=f(e)=p(e-
∴p(e-
③当0<p<1时,由x∈[1,e],
由(2)知当p=1时,f(x)在[1,e]上是增函数,
综上,实数p的取值范围是
点评:本题考查导数知识的运用,考查函数的单调性,考查存在性问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,综合性强.
练习册系列答案
相关题目
(理)如图,平面ADEF⊥平面ABCD,ABCD与ADEF均为矩形,且AB:AD:AF=
|
60°.
(1)试确定P点位置;
(2)求二面角P—MC—D的大小的余弦值;
(3)当AB长为多少时,点D到平面PMC的距离等于
?
(文)设函数
(
),其中
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求函数
的极大值和极小值;
(Ⅲ)当
时,证明存在
,使得不等式
对任意的
恒成立.