题目内容
已知数列{an}满足a1=3,
=an(n∈N*),记bn=
.
(Ⅰ)求数列{bn}的通项公式.
(Ⅱ)若(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,求实数t的取值范围;
(Ⅲ)记cn=
,求证:c1•c2•c3…cn>
.
| 2-2an+1 |
| an+1-3 |
| an-2 |
| an+1 |
(Ⅰ)求数列{bn}的通项公式.
(Ⅱ)若(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,求实数t的取值范围;
(Ⅲ)记cn=
| 3 |
| an+1 |
| 7 |
| 12 |
分析:(Ⅰ)根据
=an(n∈N*),可得bn=
=
=4bn+1,从而可得数列{bn}是以
为首项,
为公比的等比数列,故可求数列{bn}的通项公式;
(Ⅱ)将(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,等价于t≤
=2n+
对任意n∈N*恒成立,根据y=m+
(m>0)在(0,3)上单调递减,在(3,+∞)上单调递增,可求右边函数的最小值,从而可求实数t的取值范围;
(Ⅲ)因为cn=
=1-
,为了证明结论,首先猜想并证明(1-
)(1-
) … (1-
)≥1-(
+
+ …+
),利用
+
+ …+
<
=
,即可证得结论.
| 2-2an+1 |
| an+1-3 |
| an-2 |
| an+1 |
| 4(an+1-2) |
| an+1+1 |
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)将(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,等价于t≤
| 4n+9 |
| 2n |
| 9 |
| 2n |
| 9 |
| m |
(Ⅲ)因为cn=
| 3 |
| an+1 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| ||
1-
|
| 1 |
| 3 |
解答:解:(Ⅰ)∵
=an(n∈N*),∴bn=
=
=4bn+1,
∴
=
∵a1=3,b1=
∴数列{bn}是以
为首项,
为公比的等比数列
∴bn=
;
(Ⅱ)∵bn=
,∴an=
∵(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,
∴t≤
=2n+
对任意n∈N*恒成立
∵y=m+
(m>0)在(0,3)上单调递减,在(3,+∞)上单调递增
∴(2n+
)min=min{2+
,4+
}=
∴t≤
∴实数t的取值范围是(-∞,
];
(Ⅲ)∵cn=
=1-
,
猜想(1-
)(1-
) … (1-
)≥1-(
+
+ …+
)
用数学归纳法证明:
①n=1时,左边=
=右边;n=2时,左边=
,右边=
,左边>右边;
②假设n=k(k≥2)时结论成立,即(1-
)(1-
) … (1-
)≥1-(
+
+ …+
)
则n=k+1时,左边=(1-
)(1-
) … (1-
)(1-
)≥[1-(
+
+ …+
)](1-
)
>1-(
+
+ …+
)=右边
由①②知,猜想(1-
)(1-
) … (1-
)≥1-(
+
+ …+
)成立
又
+
+ …+
<
=
∴c1•c2•c3…cn=(1-
)(1-
) … (1-
)≥1-(
+
+ …+
)>1-
>
∴c1•c2•c3…cn>
| 2-2an+1 |
| an+1-3 |
| an-2 |
| an+1 |
| 4(an+1-2) |
| an+1+1 |
∴
| bn+1 |
| bn |
| 1 |
| 4 |
∵a1=3,b1=
| 1 |
| 4 |
∴数列{bn}是以
| 1 |
| 4 |
| 1 |
| 4 |
∴bn=
| 1 |
| 4n |
(Ⅱ)∵bn=
| an-2 |
| an+1 |
| 2•4n+1 |
| 4n-1 |
∵(4n-1)an≥t•2n+1-17对任意n∈N*恒成立,
∴t≤
| 4n+9 |
| 2n |
| 9 |
| 2n |
∵y=m+
| 9 |
| m |
∴(2n+
| 9 |
| 2n |
| 9 |
| 2 |
| 9 |
| 4 |
| 25 |
| 4 |
∴t≤
| 25 |
| 4 |
∴实数t的取值范围是(-∞,
| 25 |
| 4 |
(Ⅲ)∵cn=
| 3 |
| an+1 |
| 1 |
| 4n |
猜想(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
用数学归纳法证明:
①n=1时,左边=
| 3 |
| 4 |
| 45 |
| 64 |
| 11 |
| 16 |
②假设n=k(k≥2)时结论成立,即(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
则n=k+1时,左边=(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k |
| 1 |
| 4k+1 |
>1-(
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4k+1 |
由①②知,猜想(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
又
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| ||
1-
|
| 1 |
| 3 |
∴c1•c2•c3…cn=(1-
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n |
| 1 |
| 3 |
| 7 |
| 12 |
∴c1•c2•c3…cn>
| 7 |
| 12 |
点评:本题以数列递推式为载体,考查数列的通项,考查恒成立问题,考查不等式的证明,解题的关键是恒成立问题的等价转化,及数列的特殊性,第(Ⅲ)难度较大.
练习册系列答案
相关题目