题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1,F2,椭圆上一点M(
2
6
3
3
3
)
满足
MF1
MF2
=0

(1)求椭圆的方程;
(2)若直线L:y=kx+
2
与椭圆恒有不同交点A、B,且
OA
OB
>1
(O为坐标原点),求k的范围.
分析:(1)由题意得:c=
3
,a=2,b=1.从而写出椭圆方程即可;
(2)将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量的数量积坐标公式即可求得k的范围,从而解决问题.
解答:解:(1)由题意得:
c=
3
,a=2,
∴b=1.
∴椭圆方程为
x2
4
+y2=1

(2)由
x2
4
+y2=1
y=kx+
2

消去y解得(
1
4
+k2)x2+2
2
kx+1=0

设A(x1,y1),B(x2,y2
OA
OB
=x1x2+y1y2

=(1+k2)x1x2+
2
k(x1+x2)+2=
6-4k2
1+4k2
>1

k∈(
10
4
,-
1
2
)∪(
1
2
10
4
)
点评:本小题主要考查椭圆的应用、向量的数量积的应用、不等式的解法等基础知识,解答的关键在于学生的运算求解能力,数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网