题目内容
设函数f(x)=cos2x+2
sinxcosx(x∈R)的最大值为M,最小正周期为T.
(1)求M、T;
(2)求f(x)的单调递减区间.
| 3 |
(1)求M、T;
(2)求f(x)的单调递减区间.
(1)f(x)=cos2x+
sin2x=2(sin
cos2x+cos
sin2x)=2sin(2x+
)
∴M=2,T=
=π
(2)当2x+
∈[
+2kπ,
+2kπ],即x∈[
+kπ,
+kπ](k∈R)时,f(x)单调递减.
∴f(x)的单调递减区间为[
+kπ,
+kπ](k∈R).
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
∴M=2,T=
| 2π |
| 2 |
(2)当2x+
| π |
| 6 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 6 |
| 2π |
| 3 |
∴f(x)的单调递减区间为[
| π |
| 6 |
| 2π |
| 3 |
练习册系列答案
相关题目