ÌâÄ¿ÄÚÈÝ
9£®ÏÂÁÐÅжÏÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ÃüÌâ¡°Èôa-b=1£¬Ôòa2+b2£¾$\frac{1}{2}$¡±ÊÇÕæÃüÌâ | |
| B£® | ¡°a=b=$\frac{1}{2}$¡±ÊÇ¡°$\frac{1}{a}+\frac{1}{b}$=4¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | |
| C£® | Èô·Ç¿Õ¼¯ºÏA£¬B£¬CÂú×ãA¡ÈB=C£¬ÇÒB²»ÊÇAµÄ×Ó¼¯£¬Ôò¡°x¡ÊC¡±ÊÇ¡°x¡ÊA¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ | |
| D£® | ÃüÌâ¡°?x0¡ÊR£¬x02+1¡Ü2x0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+1£¾2x¡± |
·ÖÎö ÀûÓþٷ´ÀýµÄ·½·¨ÒÀ´ÎÑéÖ¤¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º¶ÔÓÚAÑ¡ÏîÖУ¬µ±$a=\frac{1}{2}£¬b=-\frac{1}{2}$ʱ£¬²»ÕýÈ·£»
¶ÔÓÚBÑ¡Ï¡°a=b=$\frac{1}{2}$¡±¿ÉÒԵõ½¡°$\frac{1}{a}+\frac{1}{b}$=4¡±¡°$\frac{1}{a}+\frac{1}{b}$=4¡±Ê±£¬µÃµ½a£¬bµÄÖµ¿ÉÒԺܶ࣬²»½ö½öÖ»ÓÐ$\frac{1}{2}$£®Ó¦Îª³ä·Ö²»±ØÒªÌõ¼þ£¬
¶ÔÓÚCÑ¡ÏA¡ÈB=C˵Ã÷CÖÐÓÐA£¬µ«AÖв¢²»Äܰüº¬C£¬¼´AÊÇCµÄ×Ó¼¯£®Ó¦Îª±ØÒª²»³ä·ÖÌõ¼þ£®
¹ÊÑ¡£ºD
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬³äÒªÌõ¼þµÄÅжϵÈ֪ʶµã£¬×ÛºÏÐÔ½ÏÇ¿£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®Èôº¯Êýy=f£¨x£©Âú×㣬´æÔÚx0¡Ù0£¬x0¡Ù$\frac{1}{x_0}$£¬Ê¹$f£¨{x_0}£©=f£¨\frac{1}{x_0}£©=0$£¬Ôòx0½Ð×öº¯Êýy=f£¨x£©µÄ¡°»ùµã¡±£¬ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx+1´æÔÚ¡°»ùµã¡±£¬Ôòa2+£¨b-2£©2µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | [2£¬+¡Þ£© | B£® | [4£¬+¡Þ£© | C£® | [8£¬+¡Þ£© | D£® | [10£¬+¡Þ£© |
20£®Èôº¯Êýf£¨x£©=ax2+b|x|+c£¨a¡Ù0£©ÓÐËĸöµ¥µ÷Çø¼ä£¬ÔòʵÊýa£¬b£¬cÂú×㣨¡¡¡¡£©
| A£® | b2-4ac£¾0£¬a£¾0 | B£® | b2-4ac£¾0 | C£® | -$\frac{b}{2a}$£¾0 | D£® | -$\frac{b}{2a}$£¼0 |
17£®º¯Êýy=f£¨x£©£¬£¨x¡ÊR£©ÎªÆæº¯Êý£¬µ±x¡Ê£¨-¡Þ£¬0£©Ê±£¬xf¡ä£¨x£©£¼f£¨-x£©£¬Èô a=$\sqrt{3}$•f£¨$\sqrt{3}$£©£¬b=£¨lg3£©•f£¨lg3£©£¬c=£¨log2$\frac{1}{4}$£©•f£¨log2$\frac{1}{4}$£©£¬Ôòa£¬b£¬cµÄ´óС˳ÐòΪ£¨¡¡¡¡£©
| A£® | a£¼b£¼c | B£® | c£¾b£¾a | C£® | c£¼a£¼b | D£® | c£¾a£¾b |
14£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬¹ý¶¨µã£¨2£¬0£©×÷´¹Ö±ÓÚxÖáµÄÖ±Ïß½»Å×ÎïÏßÓÚµãM¡¢N£¬ÈôPΪÅ×ÎïÏßCÉϲ»Í¬ÓÚM¡¢NµÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ²¢¼ÇΪk1¡¢k2£¬Ôò|$\frac{1}{k_1}-\frac{1}{k_2}$|=£¨¡¡¡¡£©
| A£® | 2 | B£® | 1 | C£® | $\sqrt{2}$ | D£® | $2\sqrt{2}$ |
19£®ÉèËæ»ú±äÁ¿X£ºB£¨6£¬$\frac{1}{3}$£©£¬ÔòD£¨X£©µÈÓÚ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\frac{4}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{8}{3}$ |