题目内容

已知0°<β<45°<α<135°,cos(45°-α)=
3
5
sin(135°+β)=
5
13
,求:
(1)sin(α+β)的值.   
(2)cos(α-β)的值.
解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
cos(45°-α)=
3
5
,∴sin(45°-α)=-
4
5

sin(135°+β)=
5
13
,∴cos(135°+β)=-
12
13

∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=-[(-
12
13
)
3
5
+
5
13
(-
4
5
)]=
56
65

cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(-
12
13
)
3
5
-
5
13
(-
4
5
)]
=
16
65
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网