题目内容
已知0°<β<45°<α<135°,cos(45°-α)=
,sin(135°+β)=
,求:
(1)sin(α+β)的值.
(2)cos(α-β)的值.
| 3 |
| 5 |
| 5 |
| 13 |
(1)sin(α+β)的值.
(2)cos(α-β)的值.
解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵cos(45°-α)=
,∴sin(45°-α)=-
,
∵sin(135°+β)=
,∴cos(135°+β)=-
∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=-[(-
)
+
(-
)]=
cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(-
)
-
(-
)]=
∴-90°<45°-α<0°,135°<135+β<180°
∵cos(45°-α)=
| 3 |
| 5 |
| 4 |
| 5 |
∵sin(135°+β)=
| 5 |
| 13 |
| 12 |
| 13 |
∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=-[(-
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 56 |
| 65 |
cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(-
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
练习册系列答案
相关题目
已知0<α<
,sinα=
,则
的值为( )
| π |
| 2 |
| 4 |
| 5 |
| sin2α+sin2α |
| cos2α+cos2α |
| A、20 | ||||
B、
| ||||
C、
| ||||
D、
|