题目内容
12.分析 由题意可得正四棱锥的底面边长为$\frac{a}{2}$,斜高为b-$\frac{a}{4}$,再根据斜高大于底面边长的一半,求得$\frac{b}{a}$的取值范围.
解答 解:由题意可得正四棱锥的底面边长为$\frac{a}{2}$,斜高为b-$\frac{a}{4}$,
再根据斜高b-$\frac{a}{4}$ 大于底面边长的一半,可得b-$\frac{a}{4}$>$\frac{a}{4}$,即b>$\frac{a}{2}$,求得 $\frac{b}{a}$>$\frac{1}{2}$.
故答案为:($\frac{1}{2}$,+∞).
点评 本题主要考查棱锥的结构特征,属于基础题.
练习册系列答案
相关题目
3.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的相关数据,如表所示.
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)求x,y的值.
(2)求顾客一次购物的结算时间超过2分钟的概率.
| 一次购物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件以上 |
| 顾客数(人) | x | 30 | 25 | y | 10 |
| 结算时间(分钟/人) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求x,y的值.
(2)求顾客一次购物的结算时间超过2分钟的概率.
7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中:${w_i}=\sqrt{x_i}$ $\overline{w}$=$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?并求出最大值
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(Ⅰ)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?并求出最大值