题目内容
已知:如图,CD是⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠A=20°,则
∠DBE=______.
∠DBE=______.
连接BC,
∵CD是⊙O的直径,
∴∠CBD=90°,
∵AE是⊙O的切线,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°---(1),
∠A+∠2=∠1----(2),
(1)-(2)得∠1=55°
即∠DBE=55°.
故答案为:∠DBE=55°.
∵CD是⊙O的直径,
∴∠CBD=90°,
∵AE是⊙O的切线,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°---(1),
∠A+∠2=∠1----(2),
(1)-(2)得∠1=55°
即∠DBE=55°.
故答案为:∠DBE=55°.
练习册系列答案
相关题目