题目内容

3.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向由平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间和对称中心.

分析 (1)由周期求得ω,由函数g(x)为奇函数求得φ和b的值,从而得到函数f(x)的解析式.
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得x的范围,即可得到函数的减区间,令2x+$\frac{π}{3}$=kπ,k∈z,求得x,即可解得函数的对称中心.

解答 解:(1)∵$\frac{2π}{ω}$=2×$\frac{π}{2}$,∴ω=2,∴f(x)=sin(2x+φ)-b.
又g(x)=sin[2(x-$\frac{π}{6}$)+φ]-b+$\sqrt{3}$为奇函数,且0<φ<π,则φ=$\frac{π}{3}$,b=$\sqrt{3}$,
故f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$.
(2)令2x+$\frac{π}{3}$=kπ,k∈z,求得:x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
故函数的对称中心为:($\frac{kπ}{2}$-$\frac{π}{6}$,-$\sqrt{3}$),k∈Z,
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得:$\frac{π}{12}$+kπ≤x≤$\frac{7π}{12}$+kπ,(k∈Z),
故函数的减区间为[$\frac{π}{12}$+kπ,$\frac{7π}{12}$+kπ](k∈Z).

点评 本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换,函数的奇偶性,考查了数形结合思想的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网