题目内容

是否存在常数a、b、c使等式1•(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c对一切正整数n成立?证明你的结论.
分别用n=1,2,3代入解方程组
a+b+c=0
16a+4b+c=3
81a+9b+c=18
?
a=
1
4
b=-
1
4
c=0.

下面用数学归纳法证明.
(1)当n=1时,由上可知等式成立;
(2)假设当n=k时,等式成立,
则当n=k+1时,左边=1•[(k+1)2-12]+2[(k+1)2-22]+…+k[(k+1)2-k2]+(k+1)[(k+1)2-(k+1)2]
=1•(k2-12)+2(k2-22)++k(k2-k2)+1•(2k+1)+2(2k+1)+…+k(2k+1)
=
1
4
k4+(-
1
4
)k2+(2k+1)+2(2k+1)++k(2k+1)
=
1
4
(k+1)4-
1
4
(k+1)2
∴当n=k+1时,等式成立.
由(1)(2)得等式对一切的n∈N*均成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网