题目内容
(Ⅰ)求
| OA |
| OB |
(Ⅱ)求∠BOD+∠COD.
分析:设正方形的边长为1,可得
,
,
,
的坐标,(1)cos<
,
>=
代入数据计算可得;(2)同理可得cos∠BOD,cos∠COD的值,由平方关系可得sin∠BOD和sin∠COD的值,可得cos(∠BOD+∠COD)的值,结合角的范围可得答案.
| OA |
| OB |
| OC |
| OD |
| OA |
| OB |
| ||||
|
|
解答:解:设正方形的边长为1,则A(1,1),B(2,1),C(3,1),D(3,0),
故
=(1,1),
=(2,1),
=(3,1),
=(3,0)
(1)可得cos<
,
>=
=
=
,
(2)同理可得cos∠BOD=
=
=
,
故可得sin∠BOD=
=
,
cos∠COD=
=
=
,sin∠COD=
,
故cos(∠BOD+∠COD)=
×
-
×
=
,
由角的范围可知∠BOD+∠COD=
故
| OA |
| OB |
| OC |
| OD |
(1)可得cos<
| OA |
| OB |
| ||||
|
|
| 3 | ||||
|
| ||
| 5 |
(2)同理可得cos∠BOD=
| ||||
|
|
| 6 | ||
|
2
| ||
| 5 |
故可得sin∠BOD=
1-(
|
| ||
| 5 |
cos∠COD=
| ||||
|
|
| 9 | ||
|
3
| ||
| 10 |
| ||
| 10 |
故cos(∠BOD+∠COD)=
2
| ||
| 5 |
3
| ||
| 10 |
| ||
| 5 |
| ||
| 10 |
| ||
| 2 |
由角的范围可知∠BOD+∠COD=
| π |
| 4 |
点评:本题考查数量积表示向量的夹角,涉及和差角三角函数,属中档题.
练习册系列答案
相关题目