题目内容
设函数
,
(1)用定义证明:函数f(x)是R上的增函数;
(2)证明:对任意的实数t,都有f(t)+f(1-t)=1;
(3)求值:
…
.
解:(1)证明:设任意x1<x2,
则f(x1)-f(x2)=
=
,
∵x1<x2,
∴
,∴
,
又
.
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),…(4分)
∴f(x)在R上是增函数 …(6分)
(2)对任意t,f(t)+f(1-t)=
=
=
=1.
∴对于任意t,f(t)+f(1-t)=1 …(10分)
(3)∵由(2)得f(t)+f(1-t)=1
∴
,
,
∴
+
=2011,
∴
=
…(14分)
分析:(1)直接利用用定义,通过f(x1)-f(x2)化简表达式,比较出大小即可证明函数f(x)是R上的单调性;
(2)化简f(t)+f(1-t),证明它的值是1即可;
(3)由(2),f(t)+f(1-t)=1,求出首末两项的和为1,利用倒序相加法,求出
…
.
点评:本题考查函数的单调性的证明,函数值的求法,考查计算能力,值域倒序相加法的应用.
则f(x1)-f(x2)=
∵x1<x2,
∴
又
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2),…(4分)
∴f(x)在R上是增函数 …(6分)
(2)对任意t,f(t)+f(1-t)=
∴对于任意t,f(t)+f(1-t)=1 …(10分)
(3)∵由(2)得f(t)+f(1-t)=1
∴
∴
∴
分析:(1)直接利用用定义,通过f(x1)-f(x2)化简表达式,比较出大小即可证明函数f(x)是R上的单调性;
(2)化简f(t)+f(1-t),证明它的值是1即可;
(3)由(2),f(t)+f(1-t)=1,求出首末两项的和为1,利用倒序相加法,求出
点评:本题考查函数的单调性的证明,函数值的求法,考查计算能力,值域倒序相加法的应用.
练习册系列答案
相关题目