题目内容
已知函数f(x)=
-cos2(x+
)+sin(x+
)cos(x+
).
(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
,求α.
| 1 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
| ||
| 2 |
(I)函数f(x)=
-cos2(x+
)+sin(x+
)cos(x+
)=
-
[1+cos(2x+
)] +
sin(2x+
)
=
sin(2x+
)-
cos(2x+
)=
sin[(2x+
)-
]=
sin(2x+
),
∴函数f(x)的最大值为
,周期为T=π
(II)∵f(α)=
∴
sin(2α+
)=
∴sin(2α+
)=1
∴2α+
=2kπ+
k∈Z,∴2α=2kπ+
k∈Z
∴α=kπ+
k∈Z
∵α∈(0,2π),∴α=
或α=
| 1 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
=
| 1 |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
| ||
| 2 |
| π |
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
∴函数f(x)的最大值为
| ||
| 2 |
(II)∵f(α)=
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
∴2α+
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
∴α=kπ+
| π |
| 8 |
∵α∈(0,2π),∴α=
| π |
| 8 |
| 9π |
| 8 |
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|