题目内容
已知函数f(x)=
sin2x-cos2x-
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=
,f(C)=0,若sinB=2sinA,求a,b的值.
| ||
| 2 |
| 1 |
| 2 |
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=
| 3 |
(1)f(x)=
sin2x-cos2x-
=
sin2x-
-
=
sin2x-
cos2x-1=sin(2x-
)-1,
∵-1≤sin(2x-
)-≤1,
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T=
=π;
(2)由f(C)=sin(2C-
)-1=0,得到sin(2C-
)=1,
∵0<C<π,∴-
<2C-
<
,
∴2C-
=
,即C=
,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=
,
∴由余弦定理,得c2=a2+b2-2abcos
,即a2+b2-ab=3②,
联立①②解得:a=1,b=2.
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∵-1≤sin(2x-
| π |
| 6 |
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T=
| 2π |
| 2 |
(2)由f(C)=sin(2C-
| π |
| 6 |
| π |
| 6 |
∵0<C<π,∴-
| π |
| 6 |
| π |
| 6 |
| 11π |
| 6 |
∴2C-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=
| 3 |
∴由余弦定理,得c2=a2+b2-2abcos
| π |
| 3 |
联立①②解得:a=1,b=2.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |