题目内容
(08年福建卷理)(本小题满分12分)
如图,椭圆的一个焦点是,O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角
形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F
任意转动,恒有,求a的取值范围.
(本题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.
(本小题满分12分)
给定椭圆:,称圆心在原点,半径为的圆是
椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距
离为.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭
圆都只有一个交点,且分别交其“准圆”于点;
(1)当为“准圆”与轴正半轴的交点时,求的方程.
(2)求证:为定值.