题目内容
已知函数A.(2,8]
B.(2,9]
C.(8,9]
D.(8,9)
【答案】分析:令t=x2+2x,则t≥-1,f(t)=
.由题意可得,函数f(t)的图象与直线y=a 有3个不同的交点,且每个t值有2个x值与之对应,数形结合可得
a的取值范围.
解答:
解:令t=x2+2x,则t≥-1,函数f(t)=
.
由题意可得,函数f(t)的图象与直线y=a 有3个不同的交点,且每个t值有2个x值与之对应,如图所示:
由于当t=-1时,f(t)=8,此时,t=-1对应的x值只有一个x=-1,不满足条件,故a的取值范围是 (8,9],
故选C.
点评:本题主要考查函数的零点与方程的根的关系,体现了数形结合的数学思想及等价转化的数学思想,属于中档题.
a的取值范围.
解答:
由题意可得,函数f(t)的图象与直线y=a 有3个不同的交点,且每个t值有2个x值与之对应,如图所示:
由于当t=-1时,f(t)=8,此时,t=-1对应的x值只有一个x=-1,不满足条件,故a的取值范围是 (8,9],
故选C.
点评:本题主要考查函数的零点与方程的根的关系,体现了数形结合的数学思想及等价转化的数学思想,属于中档题.
练习册系列答案
相关题目