题目内容
【题目】已知椭圆
,焦距为
.
(1)求椭圆
的标准方程;
(2)若一直线
与椭圆
相交于
、
两点(
、
不是椭圆的顶点),以
为直径的圆过椭圆
的上顶点,求证:直线
过定点,并求出该定点的坐标.
【答案】(1)
;(2)存在,直线
过定点
.
【解析】
(1)根据椭圆的焦距求出
的值,进而可得出椭圆的标准方程;
(2)设点
、
,将直线
的方程与椭圆
的方程联立,列出韦达定理,根据以
为直径的圆过椭圆
的上顶点
,得
,利用平面向量数量积的坐标运算,并代入韦达定理,可得出
与
所满足的等式,即可得出直线
所过定点的坐标.
(1)设椭圆
的焦距为
,有
,
,所以,椭圆的焦点在
轴上,
得
,有
,得
,故椭圆
的标准方程为
;
(2)由方程组
,得
,
即
.
,即
.
设
、
两点的坐标分别为
、
,
则
,
,
,
![]()
.
以
为直径的圆过椭圆的上顶点
,
,即
,
即![]()
,
化简得
,
或
.
当
时,直线
过定点
,与已知矛盾.
当
时,满足
,此时直线
为
过定点
.
直线
过定点
.
练习册系列答案
相关题目
【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:
学历 | 35岁以下 | 35-55岁 | 55岁及以上 |
本科 |
| 60 | 40 |
硕士 | 80 | 40 |
|
(1)若随机抽取一人,年龄是35岁以下的概率为
,求
;
(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.