题目内容
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
考点:
利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.
专题:
综合题.
分析:
(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值;
(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1,求导函数,确定函数的极值点,进而可得k≤﹣3时,函数h(x)在区间[k,2]上的最大值为h(﹣3)=28;﹣3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28,由此可得结论.
解答:
解:(1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g'(x)=3x2+b,k2=3+b,
由(1,c)为公共切点,可得:2a=3+b ①
又f(1)=a+1,g(1)=1+b,
∴a+1=1+b,即a=b,代入①式可得:a=3,b=3.
(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1
则h′(x)=3x2+6x﹣9,令h'(x)=0,解得:x1=﹣3,x2=1;
∴k≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,2]上单调减,所以在区间[k,2]上的最大值为h(﹣3)=28
﹣3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28
所以k的取值范围是(﹣∞,﹣3]
点评:
本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题的关键是正确求出导函数.