题目内容
已知函数f(x)=A+Bsinx,若B<0时,f(x)最大值为
,最小值为-
,求y=A-Bcosx最值,并求出函数取得最值时x的取值.
| 3 |
| 2 |
| 1 |
| 2 |
分析:根据正弦函数的最值,结合题意建立关于A、B的方程组,解出A=1,B=-
.从而得到函数y=A-Bcosx即y=1+
cosx,利用余弦函数的图象与性质即可算出答案.
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:∵函数f(x)=A+Bsinx,满足B<0,
∴f(x)最大值为A-B=
,最小值为A+B=-
,
联解可得A=1,B=-
.
由此可得函数y=A-Bcosx即y=1+
cosx,
∴当x=2kπ(k∈Z)时,函数有最大值为
;
当x=(2k+1)π(k∈Z)时,函数有最小值为
.
∴f(x)最大值为A-B=
| 3 |
| 2 |
| 1 |
| 2 |
联解可得A=1,B=-
| 1 |
| 2 |
由此可得函数y=A-Bcosx即y=1+
| 1 |
| 2 |
∴当x=2kπ(k∈Z)时,函数有最大值为
| 3 |
| 2 |
当x=(2k+1)π(k∈Z)时,函数有最小值为
| 1 |
| 2 |
点评:本题给出正弦型函数f(x)=A+Bsinx的最值,求余弦型函数y=A-Bcosx的最值,着重考查了正余弦函数的图象与性质,及其应用的知识,属于中档题.
练习册系列答案
相关题目