题目内容

已知实数q≠0,数列{an}的前n项和Sn,a1≠0,对于任意正整数m,n且m>n,Sn-Sm=qmSn-m恒成立.
(1)证明数列{an}是等比数列;
(2)若正整数i,j,k成公差为3的等差数列,Si,Sj,Sk按一定顺序排列成等差数列,求q的值.
分析:(1)令n=m+1,则由题意可得 Sm+1-Sm=qm•S1,即 am+1=a1•qm,可得 
am+1
am
=q,故有
an+1
an
=q(常数),可得数列{an}是等比数列.
(2)不妨设i,i+3,i+6,分Si,Si+3,Si+6成等差数列、Si+3,Si,Si+6成等差数列、Si+3,Si+6,Si成等差数列这三种情况,分别求出公比q的值.
解答:解:(1)令n=m+1,则由题意可得 Sm+1-Sm=qm•S1,即 am+1=a1•qm
故有 am=a1•qm-1,∴
am+1
am
=q,∴
an+1
an
=q(常数),
所以数列{an}是等比数列,
(2)不妨设公差为3的等差数列为 i,i+3,i+6,若Si,Si+3,Si+6成等差数列,
则 ai+1+ai+2+ai+3=ai+4+ai+5+ai+6=( ai+1+ai+2+ai+3 )q3
即 1=q3,解得 q=1.
若Si+3,Si,Si+6成等差数列,则-( ai+1+ai+2+ai+3 )=( ai+1+ai+2+ai+3+ai+4+ai+5+ai+6 ),
∴2( ai+1+ai+2+ai+3 )+( ai+1+ai+2+ai+3 )q3=0,即 2+q3=0,解得 q=-
32

若Si+3,Si+6,Si成等差数列,则有 ( ai+4+ai+5+ai+6)=-( ai+1+ai+2+ai+3+ai+4+ai+5+ai+6 ),
∴2( ai+1+ai+2+ai+3 )q3+( ai+1+ai+2+ai+3 )=0,∴2q3+1=0,解得q=-
1
32

综上可得,q的值等于1,或等于-
32
,或等于-
1
32
点评:本题主要考查等比关系的确定,等差数列的定义和性质,根据数列的递推关系求通项,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网