题目内容
已知函数f(x)=ex-mx,
(1)当m=1时,求函数f(x)的最小值:
(2)若函数g(x)=f(x)-lnx+x2存在两个零点,求m的取值范围.
(1)当m=1时,求函数f(x)的最小值:
(2)若函数g(x)=f(x)-lnx+x2存在两个零点,求m的取值范围.
(1)当m=1时,f(x)=ex-x,
∴f′(x)=ex-1,
当x<0时,f′(x)<0,
当x>0时,f′(x)>0,
∴f(x)min=f(x)=1.
(2)由g(x)=f(x)-lnx+x2=0,
得m=
,
令h(x)=
,
则h′(x)=
,
观察得x=1时,h′(x)=0.
当x>1时,h′(x)>0,
当0<x<1时,h′(x)<0,
∴h(x)min=h(1)=e+1,
∴函数g(x)=f(x)-lnx+x2存在两个零点时m的取值范围是(e+1,+∞).
∴f′(x)=ex-1,
当x<0时,f′(x)<0,
当x>0时,f′(x)>0,
∴f(x)min=f(x)=1.
(2)由g(x)=f(x)-lnx+x2=0,
得m=
| ex-lnx+x2 |
| x |
令h(x)=
| ex-lnx+x2 |
| x |
则h′(x)=
| (x-1)ex+x2-1+lnx |
| x2 |
观察得x=1时,h′(x)=0.
当x>1时,h′(x)>0,
当0<x<1时,h′(x)<0,
∴h(x)min=h(1)=e+1,
∴函数g(x)=f(x)-lnx+x2存在两个零点时m的取值范围是(e+1,+∞).
练习册系列答案
相关题目