题目内容
在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.
(1)若D是BC的中点,求证: AD⊥CC1;
(2)过侧面BB1C1C的对角线BC1的平面交侧棱AA1于M,若AM=MA1,求证: 截面MBC1⊥侧面BB1C1C.
(2)过侧面BB1C1C的对角线BC1的平面交侧棱AA1于M,若AM=MA1,求证: 截面MBC1⊥侧面BB1C1C.
证明: (1) ∵AB=AC,D是BC的中点,
∴AD⊥BC
∵底面ABC⊥平面BB1C1C,
∴AD⊥侧面BB1C1C,
∴AD⊥CC1.
(2) 延长B1A1与BM交于N,连结C1N,
∵AM=MA1,
∴NA1=A1B1,
∵A1B1=A1C1,
∴A1C1=A1N=A1B1,
∴C1N⊥C1B1,
∵底面NB1C1⊥侧面BB1C1C,
∴C1N⊥侧面BB1C1C
∴截面C1NB⊥侧面BB1C1C,
∴截面MBC1⊥侧面BB1C1C.

∴AD⊥BC
∵底面ABC⊥平面BB1C1C,
∴AD⊥侧面BB1C1C,
∴AD⊥CC1.
(2) 延长B1A1与BM交于N,连结C1N,
∵AM=MA1,
∴NA1=A1B1,
∵A1B1=A1C1,
∴A1C1=A1N=A1B1,
∴C1N⊥C1B1,
∵底面NB1C1⊥侧面BB1C1C,
∴C1N⊥侧面BB1C1C
∴截面C1NB⊥侧面BB1C1C,
∴截面MBC1⊥侧面BB1C1C.
练习册系列答案
相关题目