题目内容
已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2,n=1,2,3….
(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•cosnπ,求数列{bn}的前n项和Pn;
(Ⅲ)设cn=
,数列{cn}的前n项和为Tn,求证:Tn<
.
(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•cosnπ,求数列{bn}的前n项和Pn;
(Ⅲ)设cn=
| 1 |
| an-n |
| 37 |
| 44 |
(Ⅰ)∵Sn=2an+n2-3n-2,
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,∴an+1-2(n+1)=2(an-2n).
∴{an-2n}是以2为公比的等比数列;
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,∴an=2n+2n.
当n为偶数时,Pn=b1+b2+b3+…+bn
=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-[2n-1+2(n-1)]+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
-
+n=
•(2n-1)+n;
当n为奇数时,Pn=-
-(n+1).
综上,Pn=
;
(Ⅲ)cn=
=
.
当n=1时,T1=
<
当n≥2时,Tn=
+
+
+…+
<
+
+
+…+
=
+
=
+
-
=
-
<
<
综上可知:任意n∈N,Tn<
.
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,∴an+1-2(n+1)=2(an-2n).
∴{an-2n}是以2为公比的等比数列;
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,∴an=2n+2n.
当n为偶数时,Pn=b1+b2+b3+…+bn
=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-[2n-1+2(n-1)]+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
| 4(1-2n) |
| 1-22 |
| 2(1-2n) |
| 1-22 |
| 2 |
| 3 |
当n为奇数时,Pn=-
| 2n+1+2 |
| 3 |
综上,Pn=
|
(Ⅲ)cn=
| 1 |
| an-n |
| 1 |
| 2n+n |
当n=1时,T1=
| 1 |
| 3 |
| 37 |
| 44 |
当n≥2时,Tn=
| 1 |
| 21+1 |
| 1 |
| 22+2 |
| 1 |
| 23+3 |
| 1 |
| 2n+n |
<
| 1 |
| 3 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2n |
| 5 |
| 6 |
| 1 |
| 2n |
| 5 |
| 6 |
| 37 |
| 44 |
综上可知:任意n∈N,Tn<
| 37 |
| 44 |
练习册系列答案
相关题目