题目内容
已知p:|1-
|≤2,q:x2-2x+1-m2≤0,若¬p是¬q的必要不充分条件,求实数m的取值范围.
| x-1 |
| 3 |
∵|1-
|≤2的解集为[-2,10],
故命题p成立有x∈[-2,10],
由x2-2x-m2+1≤0,
1°m≥0时,得x∈[1-m,m+1],
2°m<0时,得x∈[1+m,1-m],
故命题q成立有m≥0时,得x∈[1-m,m+1],m<0时,得x∈[1+m,1-m],
若?p是?q的必要不充分条件,即p是q的充分不必要条件,
因此有[-2,10]⊆[1-m,m+1],或[-2,10]⊆[1+m,1-m],
解得m<-9或m>9.
故实数m的范围是m<-9或m>9.
| x-1 |
| 3 |
故命题p成立有x∈[-2,10],
由x2-2x-m2+1≤0,
1°m≥0时,得x∈[1-m,m+1],
2°m<0时,得x∈[1+m,1-m],
故命题q成立有m≥0时,得x∈[1-m,m+1],m<0时,得x∈[1+m,1-m],
若?p是?q的必要不充分条件,即p是q的充分不必要条件,
因此有[-2,10]⊆[1-m,m+1],或[-2,10]⊆[1+m,1-m],
解得m<-9或m>9.
故实数m的范围是m<-9或m>9.
练习册系列答案
相关题目