题目内容
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
分析:逆用二项式定理,令t=
+2
+4
+…+2n-1
,可求2t=(1+2)n-1,从而可求答案.
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
解答:解:令t=
+2
+4
+…+2n-1
,
则2t=2
+22
+23
+…+2n
=
+2
+22
+23
+…+2n
-
=(1+2)n-1,
∴t=
(3n-1),
即
+2
+4
+…+2n-1
=
(3n-1),
故选D.
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
则2t=2
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
=
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
| C | 0 n |
=(1+2)n-1,
∴t=
| 1 |
| 2 |
即
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
| 1 |
| 2 |
故选D.
点评:本题考查二项式定理的应用,考查观察与分析运算的能力,属于中档题.
练习册系列答案
相关题目