题目内容

(2012•杭州二模)设数列{an}与数列{bn}满足a1=b1=1,
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2且n∈N*).
(Ⅰ)求证:
bn+1
bn+1
=
an
an+1
(n≥2);
(Ⅱ)设(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)=λ(
1
a1
+
1
a2
…+
1
an
)
(n∈N*),求实数λ的值.
分析:(Ⅰ)由
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2且n∈N*),向上类比一项,整理即可证得结论;
(Ⅱ)由(Ⅰ)
bn+1
bn+1
=
an
an+1
知,(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)=2•
bn+1
an+1
,而
bn+1
an+1
=
1
a1
+
1
a2
+…+
1
an-1
+
1
an
,从而可求得
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
1
a1
+
1
a2
+…+
1
an
=2,即λ可求.
解答:证明:(Ⅰ)n≥2时,
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2且n∈N*),
bn+1
an+1
=
1
a1
+
1
a2
+…+
1
an-1
+
1
an

bn+1
an+1
=
bn
an
+
1
an

∴bn+1an-(bn+1)an+1=0(n≥2且n∈N*),
所以
bn+1
bn+1
=
an
an+1
(n≥2且n∈N*).                                     (7分)
(Ⅱ)由(Ⅰ)知
bn+1
bn+1
=
an
an+1
,b2=a2
∴(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)=
b1+1
b1
b2+1
b2
bn+1
bn
=
1
b1
b1+1
b2
b2+1
b3
bn-1+1
bn
bn+1
bn+1
•bn+1
=
1
b1
b1+1
b2
a2
a3
a3
a4
an-1
an
an
an+1
•bn+1
=2•
bn+1
an+1

=2(
1
a1
+
1
a2
+…+
1
an-1
+
1
an
),
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
1
a1
+
1
a2
+…+
1
an
=2,即 λ=2.                           (14分)
点评:本题考查等差数列与等比数列的综合,考查创新思维与抽象思维能力,考查化归思想与运算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网