题目内容
(2012•杭州二模)设数列{an}与数列{bn}满足a1=b1=1,
=
+
+…+
(n≥2且n∈N*).
(Ⅰ)求证:
=
(n≥2);
(Ⅱ)设(1+
)(1+
)…(1+
)=λ(
+
…+
)(n∈N*),求实数λ的值.
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
(Ⅰ)求证:
| bn+1 |
| bn+1 |
| an |
| an+1 |
(Ⅱ)设(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
分析:(Ⅰ)由
=
+
+…+
(n≥2且n∈N*),向上类比一项,整理即可证得结论;
(Ⅱ)由(Ⅰ)
=
知,(1+
)(1+
)…(1+
)=2•
,而
=
+
+…+
+
,从而可求得
=2,即λ可求.
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
(Ⅱ)由(Ⅰ)
| bn+1 |
| bn+1 |
| an |
| an+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| bn+1 |
| an+1 |
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
(1+
| ||||||
|
解答:证明:(Ⅰ)n≥2时,
∵
=
+
+…+
(n≥2且n∈N*),
∴
=
+
+…+
+
,
∴
=
+
,
∴bn+1an-(bn+1)an+1=0(n≥2且n∈N*),
所以
=
(n≥2且n∈N*). (7分)
(Ⅱ)由(Ⅰ)知
=
,b2=a2,
∴(1+
)(1+
)…(1+
)=
•
…
=
•
•
…
•
•bn+1
=
•
•
•
…
•
•bn+1
=2•
=2(
+
+…+
+
),
故
=2,即 λ=2. (14分)
∵
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
∴
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
∴bn+1an-(bn+1)an+1=0(n≥2且n∈N*),
所以
| bn+1 |
| bn+1 |
| an |
| an+1 |
(Ⅱ)由(Ⅰ)知
| bn+1 |
| bn+1 |
| an |
| an+1 |
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| b1+1 |
| b1 |
| b2+1 |
| b2 |
| bn+1 |
| bn |
| 1 |
| b1 |
| b1+1 |
| b2 |
| b2+1 |
| b3 |
| bn-1+1 |
| bn |
| bn+1 |
| bn+1 |
=
| 1 |
| b1 |
| b1+1 |
| b2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an-1 |
| an |
| an |
| an+1 |
=2•
| bn+1 |
| an+1 |
=2(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
故
(1+
| ||||||
|
点评:本题考查等差数列与等比数列的综合,考查创新思维与抽象思维能力,考查化归思想与运算能力,属于难题.
练习册系列答案
相关题目