题目内容
函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称,则f(x)的表达式是______.
与y=f(x)关于x=1对称的函数为y=f(2-x)
又∵函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称
∴f(2-x)=log2(x+1)
设t=2-x,则x=2-t
∴f(t)=log2(2-t+1)=log2(3-t)
∴f(x)=log2(3-x) (x<3)
故答案为:f(x)=log2(3-x) (x<3)
又∵函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称
∴f(2-x)=log2(x+1)
设t=2-x,则x=2-t
∴f(t)=log2(2-t+1)=log2(3-t)
∴f(x)=log2(3-x) (x<3)
故答案为:f(x)=log2(3-x) (x<3)
练习册系列答案
相关题目
函数y=log2(1+x)+
的定义域为( )
| 2-x |
| A、(0,2) |
| B、(-1,2] |
| C、(-1,2) |
| D、[0,2] |