题目内容
在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足
<
+
+
+…+
<
(n∈N*)的所有n值的和为
| 9 |
| 11 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 19 |
| 21 |
35
35
.分析:由a4是a2与a8的等比中项,a3+2是a2与a6的等差中项,可求得公差、首项,进而得到通项an,从而求得Sn及
,于是可求出
+
+
+…+
,解不等式
<
+
+…+
<
,由n的范围可确定n值,其和易求.
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 9 |
| 11 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 19 |
| 21 |
解答:解:设等差数列是{an}的公差为d,由a4是a2与a8的等比中项,得(a1+3d)2=(a1+d)(a1+7d),化简得a1d=d2①,
由a3+2是a2与a6的等差中项,得2(a1+2d+2)=(a1+d)+(a1+5d),解得d=2,代入①得a1=d=2.
所以an=a1+(n-1)•d=2n,
则Sn=
=n(n+1),
所以
=
=
-
,
则
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
,
由已知得
<1-
<
,解得
<n<
,
又n∈Z,所以n=5,6,7,8,9,且5+6+7+8+9=35,
故答案为:35.
由a3+2是a2与a6的等差中项,得2(a1+2d+2)=(a1+d)+(a1+5d),解得d=2,代入①得a1=d=2.
所以an=a1+(n-1)•d=2n,
则Sn=
| n(2+2n) |
| 2 |
所以
| 1 |
| Sn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
则
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
由已知得
| 9 |
| 11 |
| 1 |
| n+1 |
| 19 |
| 21 |
| 9 |
| 2 |
| 19 |
| 2 |
又n∈Z,所以n=5,6,7,8,9,且5+6+7+8+9=35,
故答案为:35.
点评:本题考查等差数列与等比数列的综合、数列求和问题,属中档题,通项公式、求和公式及相关基本方法是解决问题的基础.
练习册系列答案
相关题目