题目内容

已知α,β∈(0,
π2
)
,且tanα,tanβ是方程x2-5x+6=0的两根.
(1)求α+β的值;  
(2)求cos(α-β)的值.
分析:(1)由韦达定理可得 tanα+tanβ 和tanαtanβ,利用两角和的正切公式求出tan(α+β)的值,由α+β 的范围求出α+β
的值.
(2)由tanαtanβ=6,cos(α+β)=-
2
2
,解得cosαcosβ和 sinαsinβ 的值,即可求得cos(α-β)的值.
解答:解:(1)由韦达定理可得  tanα+tanβ=5,tanαtanβ=6,故有 tan(α+β) =
tanα+tanβ
1-tanαtanβ
=   -1

根据 α,β∈(0,
π
2
)
,∴0<α+β<π,故α+β=
4

(2)由tanαtanβ=6,可得sinαsinβ=6cosαcosβ①,
又由cos(α+β)=-
2
2
,可得 cosαcosβ-sinαsinβ=-
2
2
②,
联立①②解得 sinαsinβ=
3
2
5
cosαcosβ=
2
10

故cos(α-β)=cosαcosβ+sinαsinβ=
7
2
10
点评:本题考查两角和的正切公式,两角和差的余弦公式的应用,根据三角函数的值求角,求出α+β=
4
,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网