题目内容

定义区间[x1,x2](x1<x2)的长度为x2-x1,已知函数f(x)=
.
  
log
1
2
x
.
的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值与最小值的差为(  )
分析:先对函数化简可得,y= |log
1
2
x|
=
log
1
2
x  ,log
1
2
x≥0
log2x ,log
1
2
x<0
,做出函数的简图,结合图象可知要使得函数的值域为[0,2]则函数定义域的最大区间为[
1
4
,4],从而可求最大值与最小值的差.
解答:解:y= |log
1
2
x|
=
log
1
2
x  ,log
1
2
x≥0
log2x ,log
1
2
x<0

根据题意,可得其定义域为[a,b]时函数的值域[0,2],令|log
1
2
x
|=2可得x=
1
4
或x=4
由图象可知,定义域的最大区间[
1
4
,4
],
最小区间是[
1
4
,1
],
则区间[a,b]的长度的最大值与最小值的差为
(4-
1
4
)-(1-
1
4
)=3
故先C.
点评:本题主要考查了对数函数的定义域及函数的值域的求解,运用对数函数图象增减性解决数学问题的能力,体现了数形结合的思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网