题目内容
正方体ABCD-A1B1C1D1中,过顶点A1作直线l,使l与直线AC和直线BC1所成的角均为60°,则这样的直线l有
3
3
条.分析:因为AD1∥BC1,过A1在空间作直线l,使l与直线AC和BC1所成的角都等于 600,可转化为过点A在空间作直线l,使l与直线AC和AD1所成的角都等于 600.可分在平面ACD1内和在平面ACD1外两种情况寻找.因为要与直线AC和AD1所成的角都相等,故在平面ACD1内可考虑角平分线;在平面AC11外可将角平分线绕点A旋转考虑.
解答:解:
因为AD1∥BC1,所以过A1在空间作直线l,使l与直线AC和BC1所成的角都等于 60°,即过点A在空间作直线l,使l与直线AC和AD1所成的角都等于 60°.
因为∠CAD1=60°,∠CAD1的外角平分线与AC和AD1所成的角相等,均为60°,所以在平面ACD1内有一条满足要求.
因为∠CAD1的角平分线与AC和AD1所成的角相等,均为30°,
将角平分线绕点A向上转动到与面ACD1垂直的过程中,存在两条直线与直线AC和AD1所成的角都等于 60°;
故符合条件的直线有3条.
故答案为:3.
因为∠CAD1=60°,∠CAD1的外角平分线与AC和AD1所成的角相等,均为60°,所以在平面ACD1内有一条满足要求.
因为∠CAD1的角平分线与AC和AD1所成的角相等,均为30°,
将角平分线绕点A向上转动到与面ACD1垂直的过程中,存在两条直线与直线AC和AD1所成的角都等于 60°;
故符合条件的直线有3条.
故答案为:3.
点评:本题考查异面直线所成角的问题,考查空间想象能力和转化能力.在解决本题的过程中,转化思想很重要.
练习册系列答案
相关题目