题目内容
已知函数f(x)=4sinωxcos(ωx+
)+
(ω>0)的最小正周期为π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若y=f(x)+m在[-
,
]的最小值为2,求m值.
| π |
| 3 |
| 3 |
(Ⅰ)求f(x)的解析式;
(Ⅱ)若y=f(x)+m在[-
| π |
| 4 |
| π |
| 6 |
(Ⅰ)由f(x)=4sinωxcos(ωx+
)+
,得
f(x)=4sinωx(cosωxcos
-sinωxsin
)+
=2sinωxcosωx-2
sin2ωx+
=sin2ωx+
cos2ωx
=2sin(2ωx+
).
∵T=
=π,∴ω=1
∴f(x)=2sin(2x+
);
(2)y=f(x)+m=2sin(2x+
)+m
∵-
≤x≤
,∴-
≤2x+
≤
π.
当2x+
=-
,即x=-
时,ymin=-1+m=2,∴m=3.
| π |
| 3 |
| 3 |
f(x)=4sinωx(cosωxcos
| π |
| 3 |
| π |
| 3 |
| 3 |
=2sinωxcosωx-2
| 3 |
| 3 |
=sin2ωx+
| 3 |
=2sin(2ωx+
| π |
| 3 |
∵T=
| 2π |
| 2ω |
∴f(x)=2sin(2x+
| π |
| 3 |
(2)y=f(x)+m=2sin(2x+
| π |
| 3 |
∵-
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 2 |
| 3 |
当2x+
| π |
| 3 |
| π |
| 6 |
| π |
| 4 |
练习册系列答案
相关题目